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0761214: Numerical Analysis
Topic 1:

Introduction to Numerical Methods and Taylor Series

Lectures 1-4:
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Lecture 1
Introduction to Numerical Methods

 What are NUMERICAL METHODS?

 Why do we need them?

 Topics covered in 0761214.

Reading Assignment: Pages 3-10 of textbook 
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Numerical Methods

Numerical Methods:

Algorithms that are used to obtain numerical 

solutions of a mathematical problem.

Why do we need them?

1. No analytical solution exists,

2. An analytical solution is difficult to obtain

or not practical.
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What do we need?

Basic Needs in the Numerical Methods:

 Practical:  

Can be computed in a reasonable amount of time.

 Accurate: 

 Good approximate to the true value,

 Information about the approximation error   
(Bounds, error order,… ).
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Outlines of the Course

 Taylor Theorem

 Number 
Representation

 Solution of nonlinear 
Equations

 Interpolation

 Numerical 
Differentiation

 Numerical Integration

 Solution of linear 
Equations

 Least Squares curve 
fitting

 Solution of ordinary 
differential equations

 Solution of Partial 
differential equations
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Solution of Nonlinear Equations

 Some simple equations can be solved analytically:

 Many other equations have no analytical solution:
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Methods for Solving Nonlinear Equations

o Bisection Method

o Newton-Raphson Method

o Secant Method
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Solution of Systems of Linear Equations
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Cramer’s Rule is Not Practical
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Methods for Solving Systems of Linear 

Equations

o Naive Gaussian Elimination

o Gaussian Elimination with Scaled 
Partial Pivoting

o Algorithm for Tri-diagonal 
Equations
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Curve Fitting

 Given a set of data:

 Select a curve that best fits the data. One 
choice is to find the curve so that the sum 
of the square of the error is minimized.

x 0 1 2 

y 0.5 10.3 21.3 
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Interpolation

 Given a set of data:

 Find a polynomial P(x) whose graph 
passes through all tabulated points.

xi 0 1 2 

yi 0.5 10.3 15.3 

 

 

  tablein  the is)( iii xifxPy 
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Methods for Curve Fitting  

o Least Squares

o Linear Regression

o Nonlinear Least Squares Problems

o Interpolation

o Newton Polynomial Interpolation

o Lagrange Interpolation
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Integration

 Some functions can be integrated 
analytically:
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Methods for Numerical Integration

o Upper and Lower Sums

o Trapezoid Method

o Romberg Method

o Gauss Quadrature
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Solution of Ordinary Differential Equations
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Solution of Partial Differential Equations

Partial Differential Equations are more 
difficult to solve than ordinary differential 
equations:
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Summary

 Numerical Methods:

Algorithms that are 
used to obtain 
numerical solution of a 
mathematical problem.

 We need them when

No analytical solution 
exists or it is difficult 
to obtain it.

 Solution of Nonlinear Equations

 Solution of Linear Equations

 Curve Fitting 

 Least Squares

 Interpolation

 Numerical Integration

 Numerical Differentiation 

 Solution of Ordinary Differential 
Equations

 Solution of Partial Differential 
Equations

Topics Covered in the Course
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 Number Representation
 Normalized Floating Point Representation
 Significant Digits
 Accuracy and Precision 
 Rounding and Chopping

Reading Assignment: Chapter 3

Lecture 2

Number Representation and Accuracy
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Representing Real Numbers

 You are familiar with the decimal system: 

 Decimal System:   Base = 10 , Digits (0,1,…,9)

 Standard Representations:

21012 10510410210110345.312  

part  part    

fraction       integralsign

54.213
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Normalized Floating Point Representation

 Normalized Floating Point Representation:

 Scientific Notation: Exactly one non-zero digit appears 
before decimal point.

 Advantage: Efficient in representing very small or very 

large numbers.

exponent signed:,0

exponent     mantissa  sign

104321.

nd

nffffd




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Binary System

 Binary System:     Base = 2, Digits {0,1}

exponent signed     mantissa  sign

2.1 4321
nffff 

10)625.1(10)3212201211(2)101.1( 
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Fact

 Numbers that have a finite expansion in one numbering 
system may have an infinite expansion in another 
numbering system:

 You can never represent 1.1 exactly in binary system.

210 ...)011000001100110.1()1.1( 



IEEE 754 Floating-Point Standard

 Single Precision (32-bit representation)

 1-bit Sign + 8-bit Exponent + 23-bit Fraction

 Double Precision (64-bit representation)

 1-bit Sign + 11-bit Exponent + 52-bit Fraction
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S Exponent8 Fraction23

S Exponent11 Fraction52

(continued)
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Significant Digits

 Significant digits are those digits that can be 

used with confidence.

 Single-Precision: 7 Significant Digits

1.175494… × 10-38 to 3.402823… × 1038

 Double-Precision: 15 Significant Digits

2.2250738… × 10-308 to 1.7976931… × 10308
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Remarks

 Numbers that can be exactly represented are called 
machine numbers.

 Difference between machine numbers is not uniform

 Sum of machine numbers is not necessarily a machine 
number   
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Calculator Example

 Suppose you want to compute: 

3.578 * 2.139

using a calculator with two-digit fractions

3.57 * 2.13 7.60=

7.653342True answer:
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48.9

Significant Digits - Example
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Accuracy and Precision

 Accuracy is related to the closeness to the true 
value.

 Precision is related to the closeness to other 
estimated values.



0761214_Topic1 30



0761214_Topic1 31

Rounding and Chopping

 Rounding: Replace the number by the nearest   

machine number.

 Chopping: Throw all extra digits.
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Rounding and Chopping
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Can be computed if the true value is known:

100*
 valuetrue

ionapproximat  valuetrue

Error RelativePercent  Absolute

ionapproximat  valuetrue

Error True Absolute

t








tE

Error Definitions – True Error
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When the true value is not known:

100*
estimatecurrent 

estimate previous estimatecurrent 

Error  RelativePercent    Absolute  Estimated

estimate previous estimatecurrent 

Error  Absolute  Estimated






a

aE



Error Definitions – Estimated Error
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We say that the estimate is correct to n
decimal digits if:

We say that the estimate is correct to n
decimal digits rounded if:

n10Error 

n 10
2

1
Error 

Notation
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Summary

 Number Representation
Numbers that have a finite expansion in one numbering system 
may have an infinite expansion in another numbering system.

 Normalized Floating Point Representation
 Efficient in representing very small or very large numbers,

 Difference between machine numbers is not uniform,

 Representation error depends on the number of bits used in 
the mantissa. 
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Lectures 3-4

Taylor Theorem

 Motivation

 Taylor Theorem 

 Examples

Reading assignment: Chapter 4
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Motivation

 We can easily compute expressions like:

?)6.0sin(,4.1 computeyou  do HowBut,
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Remark

 In this course, all angles are assumed to 
be in radian unless you are told otherwise.  
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Taylor Series
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Maclaurin Series

 Maclaurin series is a special case of Taylor 
series with the center of expansion a = 0.
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Maclaurin Series – Example 1
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Taylor Series
Example 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

1

1+x

1+x+0.5x2

exp(x)
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Maclaurin Series – Example 2
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Maclaurin Series – Example 3
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Maclaurin Series – Example 4
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Example 4 - Remarks

 Can we apply the series for x≥1??

 How many terms are needed to get a good 
approximation???

These questions will be answered using 
Taylor’s Theorem.
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Taylor Series – Example 5
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Taylor Series – Example 6
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Convergence of Taylor Series

 The Taylor series converges fast (few terms 
are needed) when x is near the point of 
expansion. If |x-a| is large then more terms 
are needed to get a good approximation.
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Taylor’s Theorem
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Taylor’s Theorem
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Error Term
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Error Term - Example
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Alternative form of Taylor’s Theorem
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Taylor’s  Theorem – Alternative forms
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Mean Value Theorem
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Alternating Series Theorem
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Alternating Series – Example
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Example 7
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Example 7 – Taylor Series
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Example 7 – Error Term
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