0761214: Numerical Analysis Topic 1:

Introduction to Numerical Methods and Taylor Series
Lectures 1-4:

Lecture 1
 Introduction to Numerical Methods

- What are numerical methods?
 \square Why do we need them?
 - Topics covered in 0761214.

Reading Assignment: Pages 3-10 of textbook

Numerical Methods

Numerical Methods:

Algorithms that are used to obtain numerical solutions of a mathematical problem.
Why do we need them?

1. No analytical solution exists,
2. An analytical solution is difficult to obtain or not practical.

What do we need?

Basic Needs in the Numerical Methods:

- Practical:

Can be computed in a reasonable amount of time.

- Accurate:
- Good approximate to the true value,
- Information about the approximation error (Bounds, error order,...).

Outlines of the Course

- Taylor Theorem
- Number

Representation

- Solution of nonlinear Equations
- Interpolation
- Numerical

Differentiation

- Numerical Integration
- Solution of linear Equations
- Least Squares curve fitting
- Solution of ordinary differential equations
- Solution of Partial differential equations

Solution of Nonlinear Equations

- Some simple equations can be solved analytically: $x^{2}+4 x+3=0$
Analyticsolution roots $=\frac{-4 \pm \sqrt{4^{2}-4(1)(3)}}{2(1)}$

$$
x=-1 \text { and } x=-3
$$

- Many other equations have no analytical solution:

$$
\left.\begin{array}{c}
x^{9}-2 x^{2}+5=0 \\
x=e^{-x}
\end{array}\right\} \text { No analytic solution }
$$

Methods for Solving Nonlinear Equations

- Bisection Method
 - Newton-Raphson Method

- Secant Method

Solution of Systems of Linear Equations

$x_{1}+x_{2}=3$
$x_{1}+2 x_{2}=5$
We can solve it as :

$$
\begin{aligned}
& x_{1}=3-x_{2}, \quad 3-x_{2}+2 x_{2}=5 \\
& \Rightarrow x_{2}=2, x_{1}=3-2=1
\end{aligned}
$$

What to do if we have
1000 equations in 1000 unknowns.

Cramer's Rule is Not Practical

Cramer' s Rule can be used to solve the sy stem:
$x_{1}=\frac{\left|\begin{array}{ll}3 & 1 \\ 5 & 2\end{array}\right|}{\left|\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right|}=1, \quad x_{2}=\frac{\left|\begin{array}{ll}1 & 3 \\ 1 & 5\end{array}\right|}{\left|\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right|}=2$

But Cramer's Rule is not practical for large problems.
To solve N equations with N unknowns, we need $(\mathrm{N}+1)(\mathrm{N}-1) \mathrm{N}$! multiplications.
To solve a 30 by 30 sy stem, 2.3×10^{35} multiplications are needed.
A super computer needs more than 10^{20} y ears to compute this.

Methods for Solving Systems of Linear Equations

。 Naive Gaussian Elimination

- Gaussian Elimination with Scaled Partial Pivoting
- Algorithm for Tri-diagonal Equations

Curve Fitting

\square Given a set of data:

x	0	1	2
y	0.5	10.3	21.3

\square Select a curve that best fits the data. One choice is to find the curve so that the sum of the square of the error is minimized.

Interpolation

\square Given a set of data:

x_{i}	0	1	2
y_{i}	0.5	10.3	15.3

- Find a polynomial $P(x)$ whose graph passes through all tabulated points.

$$
y_{i}=P\left(x_{i}\right) \text { if } x_{i} \text { is in the table }
$$

Methods for Curve Fitting

- Least Squares
- Linear Regression
- Nonlinear Least Squares Problems
- Interpolation
- Newton Polynomial Interpolation
- Lagrange Interpolation

Integration

\square Some functions can be integrated analytically:

$$
\int_{1}^{3} x d x=\left.\frac{1}{2} x^{2}\right|_{1} ^{3}=\frac{9}{2}-\frac{1}{2}=4
$$

But many functions have no analytical solutions:

$$
\int_{0}^{a} e^{-x^{2}} d x=?
$$

Methods for Numerical Integration

- Upper and Lower Sums
- Trapezoid Method
- Romberg Method
- Gauss Quadrature

Solution of Ordinary Differential Equations

A solution to the differential equation :
$x^{\prime \prime}(t)+3 x^{\prime}(t)+3 x(t)=0$
$x^{\prime}(0)=1 ; x(0)=0$
is a function $x(t)$ that satisfies the equations.

* Analytical solutions are available for special cases only.

Solution of Partial Differential Equations

Partial Differential Equations are more difficult to solve than ordinary differential equations:

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial t^{2}}+2=0 \\
& u(0, t)=u(1, t)=0, u(x, 0)=\sin (\pi x)
\end{aligned}
$$

- Numerical Methods: Algorithms that are used to obtain numerical solution of a mathematical problem.
- We need them when No analytical solution exists or it is difficult to obtain it.

Topics Covered in the Course

- Solution of Nonlinear Equations
- Solution of Linear Equations
- Curve Fitting
- Least Squares
- Interpolation
- Numerical Integration
- Numerical Differentiation
- Solution of Ordinary Differential Equations
- Solution of Partial Differential Equations

Lecture 2
 Number Representation and Accuracy

- Number Representation
- Normalized Floating Point Representation
- Significant Digits
- Accuracy and Precision
\square Rounding and Chopping

Reading Assignment: Chapter 3

Representing Real Numbers

- You are familiar with the decimal system: $312.45=3 \times 10^{2}+1 \times 10^{1}+2 \times 10^{0}+4 \times 10^{-1}+5 \times 10^{-2}$

ㅁ Decimal System: Base $=10$, Digits ($0,1, \ldots, 9$)

- Standard Representations:

$$
\begin{array}{cccc}
\pm & 3 & 1 & 2
\end{array} \quad 4 \begin{gathered}
5 \\
\text { sign } \\
\\
\\
\\
\\
\text { integral } \\
\text { part }
\end{gathered}
$$

Normalized Floating Point Representation

- Normalized Floating Point Representation:

$$
\begin{aligned}
& \pm \frac{d . f_{1} f_{2} f_{3} f_{4}}{\text { mantissa }} \times 10^{ \pm n} \\
& \text { sign } \\
& d \neq 0, \quad \pm n: \text { signed exponent }
\end{aligned}
$$

- Scientific Notation: Exactly one non-zero digit appears before decimal point.
- Advantage: Efficient in representing very small or very large numbers.

Binary System

- Binary System: Base $=2$, Digits $\{0,1\}$

$$
\pm 1 . f_{1} f_{2} f_{3} f_{4} \times 2^{ \pm n}
$$

$$
\text { sign mantissa } \quad \text { signed exponent }
$$

$$
(1.101)_{2}=\left(1+1 \times 2^{-1}+0 \times 2^{-2}+1 \times 2^{-3}\right)_{10}=(1.625)_{10}
$$

Fact

- Numbers that have a finite expansion in one numbering system may have an infinite expansion in another numbering system:
$(1.1)_{10}=(1.000110011001100 \ldots)_{2}$
- You can never represent 1.1 exactly in binary system.

IEEE 754 Floating-Point Standard

\square Single Precision (32-bit representation)

- 1 -bit Sign +8 -bit Exponent +23 -bit Fraction
S Exponent ${ }^{8} \quad$ Fraction 23
- Double Precision (64-bit representation)
- 1-bit Sign + 11-bit Exponent + 52-bit Fraction

S Exponent 11	Fraction ${ }^{52}$
	(continued)

Significant Digits

- Significant digits are those digits that can be used with confidence.
- Single-Precision: 7 Significant Digits

$$
1.175494 \ldots \times 10^{-38} \text { to } 3.402823 \ldots \times 10^{38}
$$

ㅁ Double-Precision: 15 Significant Digits

$$
2.2250738 \ldots \times 10^{-308} \text { to } 1.7976931 \ldots \times 10^{308}
$$

Remarks

- Numbers that can be exactly represented are called machine numbers.
- Difference between machine numbers is not uniform
- Sum of machine numbers is not necessarily a machine number

Calculator Example

- Suppose you want to compute: 3.578 * 2.139 using a calculator with two-digit fractions

$$
3.57 * 2.13=7.60
$$

True answer:

$$
7.653342
$$

Significant Digits - Example

Accuracy and Precision

- Accuracy is related to the closeness to the true value.
- Precision is related to the closeness to other estimated values.

Increasing accuracy

Rounding and Chopping

- Rounding: Replace the number by the nearest machine number.
- Chopping: Throw all extra digits.

Rounding and Chopping

Error Definitions - True Error

Can be computed if the true value is known:

> Absolute True Error
> $E_{t}=\mid$ true value - approximation \mid

AbsolutePercent Relative Error

$$
\varepsilon_{\mathrm{t}}=\left|\frac{\text { true value }- \text { approximation }}{\text { true value }}\right| * 100
$$

Error Definitions - Estimated Error

When the true value is not known:

> Estimated Absolute Error
> $E_{a}=\mid$ current estimate - previous estimate \mid

Estimated Absolute Percent Relative Error

$$
\varepsilon_{a}=\left|\frac{\text { current estimate }- \text { previous estimate }}{\text { current estimate }}\right| * 100
$$

Notation

We say that the estimate is correct to n decimal digits if:
\mid Error $\mid \leq 10^{-n}$

We say that the estimate is correct to n decimal digits rounded if:

$$
\mid \text { Error } \left\lvert\, \leq \frac{1}{2} \times 10^{-n}\right.
$$

- Number Representation

Numbers that have a finite expansion in one numbering system may have an infinite expansion in another numbering system.

- Normalized Floating Point Representation
- Efficient in representing very small or very large numbers,
- Difference between machine numbers is not uniform,
- Representation error depends on the number of bits used in the mantissa.

Lectures 3-4 Taylor Theorem

\author{

- Motivation
 - Taylor Theorem
 - Examples
}

Reading assignment: Chapter 4

Motivation

- We can easily compute expressions like:
$\frac{3 \times 10^{2}}{2(x+4)}$
But, How do you compute $\sqrt{4.1}, \sin (0.6)$?

Can we use the definition to compute $\sin (0.6)$?
Is this a practical way?

Remark

- In this course, all angles are assumed to be in radian unless you are told otherwise.

Taylor Series

The Taylor series expansion of $f(x)$ about a :
$f(a)+f^{\prime}(a)(x-a)+\frac{f^{(2)}(a)}{2!}(x-a)^{2}+\frac{f^{(3)}(a)}{3!}(x-a)^{3}+\ldots$
or
Taylor Series $=\sum_{k=0}^{\infty} \frac{1}{k!} f^{(k)}(a)(x-a)^{k}$
If the series converge, we can write:
$f(x)=\sum_{k=0}^{\infty} \frac{1}{k!} f^{(k)}(a)(x-a)^{k}$

Maclaurin Series

- Maclaurin series is a special case of Taylor series with the center of expansion $a=0$.

The Maclaurin series expansion of $f(x)$:

$$
f(0)+f^{\prime}(0) x+\frac{f^{(2)}(0)}{2!} x^{2}+\frac{f^{(3)}(0)}{3!} x^{3}+\ldots
$$

If the series converge, we can write:

$$
f(x)=\sum_{k=0}^{\infty} \frac{1}{k!} f^{(k)}(0) x^{k}
$$

Maclaurin Series - Example 1

Obtain Maclaurin series expansion of $f(x)=e^{x}$

$$
\begin{array}{ll}
f(x)=e^{x} & f(0)=1 \\
f^{\prime}(x)=e^{x} & f^{\prime}(0)=1 \\
f^{(2)}(x)=e^{x} & f^{(2)}(0)=1 \\
f^{(k)}(x)=e^{x} & f^{(k)}(0)=1 \text { for } k \geq 1 \\
e^{x}=\sum_{k=0}^{\infty} \frac{1}{k!} f^{(k)}(0) x^{k}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots
\end{array}
$$

The series converges for $|\mathrm{x}|<\infty$.

Maclaurin Series - Example 2

Obtain Maclaurin series expansion of $f(x)=\sin (x)$:

$$
\begin{array}{ll}
f(x)=\sin (x) & f(0)=0 \\
f^{\prime}(x)=\cos (x) & f^{\prime}(0)=1 \\
f^{(2)}(x)=-\sin (x) & f^{(2)}(0)=0 \\
f^{(3)}(x)=-\cos (x) & f^{(3)}(0)=-1 \\
\sin (x)=\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^{k}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots .
\end{array}
$$

The series converges for $|x|<\infty$.

Maclaurin Series - Example 3

Obtain Maclaurin series expansion of : $f(x)=\cos (x)$

$$
\begin{array}{ll}
f(x)=\cos (x) & f(0)=1 \\
f^{\prime}(x)=-\sin (x) & f^{\prime}(0)=0 \\
f^{(2)}(x)=-\cos (x) & f^{(2)}(0)=-1 \\
f^{(3)}(x)=\sin (x) & f^{(3)}(0)=0 \\
\cos (x)=\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!}(x)^{k}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots .
\end{array}
$$

The series converges for $|x|<\infty$.

Maclaurin Series - Example 4

Obtain Maclaurin series expansion of $f(x)=\frac{1}{1-x}$

$$
\begin{array}{ll}
f(x)=\frac{1}{1-x} & f(0)=1 \\
f^{\prime}(x)=\frac{1}{(1-x)^{2}} & f^{\prime}(0)=1 \\
f^{(2)}(x)=\frac{2}{(1-x)^{3}} & f^{(2)}(0)=2 \\
f^{(3)}(x)=\frac{6}{(1-x)^{4}} & f^{(3)}(0)=6
\end{array}
$$

Maclaurin Series Expansion of : $\frac{1}{1-\mathrm{x}}=1+\mathrm{x}+\mathrm{x}^{2}+\mathrm{x}^{3}+\ldots$
Series converges for $|x|<1$

Example 4 - Remarks

- Can we apply the series for $x \geq 1$??
- How many terms are needed to get a good approximation???

These questions will be answered using Taylor's Theorem.

Taylor Series - Example 5

Obtain Taylor series expansion of $f(x)=\frac{1}{x}$ at $a=1$
$f(x)=\frac{1}{x}$

$$
f(1)=1
$$

$f^{\prime}(x)=\frac{-1}{x^{2}}$
$f^{\prime}(1)=-1$
$f^{(2)}(x)=\frac{2}{x^{3}}$
$f^{(2)}(1)=2$
$f^{(3)}(x)=\frac{-6}{x^{4}}$
$f^{(3)}(1)=-6$
Taylor Series Expansion $(a=1): 1-(x-1)+(x-1)^{2}-(x-1)^{3}+\ldots$

Taylor Series - Example 6

Obtain Taylor series expansion of $f(x)=\ln (x)$ at $(a=1)$

$$
\begin{aligned}
& f(x)=\ln (x), f^{\prime}(x)=\frac{1}{x}, \quad f^{(2)}(x)=\frac{-1}{x^{2}}, \quad f^{(3)}(x)=\frac{2}{x^{3}} \\
& f(1)=0, \quad f^{\prime}(1)=1, \quad f^{(2)}(1)=-1 \quad f^{(3)}(1)=2
\end{aligned}
$$

Taylor Series Expansion: $(x-1)-\frac{1}{2}(x-1)^{2}+\frac{1}{3}(x-1)^{3}-\ldots$

Convergence of Taylor Series

\square The Taylor series converges fast (few terms are needed) when \boldsymbol{x} is near the point of expansion. If $|\boldsymbol{x}-\boldsymbol{a}|$ is large then more terms are needed to get a good approximation.

'Taylor's Theorem

If a function $f(x)$ possesses derivatives of orders $1,2, \ldots,(n+1)$ on an interval containing a and x then the value of $f(x)$ is given by :

where:
$R_{n}=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1}$ and ξ is between a and x.

Taylor's Theorem

We can apply Taylor's theoremfor:
$f(x)=\frac{1}{1-x}$ with the point of expansion $a=0$ if $|x|<1$.

If $x=1$, then the function and its
derivatives are not defined.
\Rightarrow Taylor Theorem is not applicable.

Error Term

To get an idea about the approximation error, we can derive an upper bound on:
$R_{n}=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1}$
for all values of ξ between a and x.

Error Term - Example

How large is the error if we replaced $f(x)=e^{x}$ by the first 4 terms $(n=3)$ of its Taylor series expansion at $a=0$ when $x=0.2$?

$$
\begin{aligned}
& f^{(n)}(x)=e^{x} \quad f^{(n)}(\xi) \leq e^{0.2} \quad \text { for } n \geq 1 \\
& R_{n}=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1} \\
& \left|R_{n}\right| \leq \frac{e^{0.2}}{(n+1)!}(0.2)^{n+1} \Rightarrow\left|R_{3}\right| \leq 8.14268 E-05
\end{aligned}
$$

Alternative form of Taylor's Theorem

Let $f(x)$ have derivatives of orders $1,2, \ldots,(n+1)$ on an interval containing x and $x+h$ then :

$$
\begin{aligned}
& f(x+h)=\sum_{k=0}^{n} \frac{f^{(k)}(x)}{k!} h^{k}+R_{n} \quad(h=\text { step size }) \\
& R_{n}=\frac{f^{(n+1)}(\xi)}{(n+1)!} h^{n+1} \text { where } \xi \text { is between } x \text { and } x+h
\end{aligned}
$$

'Taylor's 'Theorem - Alternative forms

$$
f(x)=\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}+\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1}
$$

where ξ is between a and x.

$$
a \rightarrow x, \quad x \rightarrow x+h
$$

$f(x+h)=\sum_{k=0}^{n} \frac{f^{(k)}(x)}{k!} h^{k}+\frac{f^{(n+1)}(\xi)}{(n+1)!} h^{n+1}$
where ξ is between x and $x+h$.

Mean Value Theorem

If $f(x)$ is a continuous function on a closed interval $[a, b]$ and its derivative is defined on the open interval (a, b) then there exists $\xi \in(a, b)$
$f^{\prime}(\xi)=\frac{f(b)-f(a)}{b-a}$
Proof : Use Taylor's Theorem for $n=0, x=a, x+h=b$ $f(b)=f(a)+f^{\prime}(\xi)(b-a)$

Alternating Series Theorem

Consider the alternating series :
$\mathrm{S}=a_{1}-a_{2}+a_{3}-a_{4}+\Lambda$
If $\left\{\begin{array}{l}a_{1} \geq a_{2} \geq a_{3} \geq a_{4} \geq \Lambda \\ \begin{array}{l}\text { and }\end{array} \\ \lim _{n \rightarrow \infty} a_{n}=0\end{array}\right.$

$$
\text { then }\left\{\begin{array}{c}
\text { The series converges } \\
\text { and } \\
\left|S-S_{n}\right| \leq a_{n+1}
\end{array}\right.
$$

S_{n} : Partial sum (sum of the first n terms)
a_{n+1} : First omitted term

Alternating Series - Example

$\sin (1)$ can be computedusing: $\sin (1)=1-\frac{1}{3!}+\frac{1}{5!}-\frac{1}{7!}+\Lambda$
This is a convergent alternating series since :
$a_{1} \geq a_{2} \geq a_{3} \geq a_{4} \geq \Lambda$ and $\lim _{n \rightarrow \infty} a_{n}=0$
Then:
$\left|\sin (1)-\left(1-\frac{1}{3!}\right)\right| \leq \frac{1}{5!}$
$\left|\sin (1)-\left(1-\frac{1}{3!}+\frac{1}{5!}\right)\right| \leq \frac{1}{7!}$

Example 7

Obtain the Taylor series expansion
of $f(x)=e^{2 x+1}$ at $a=0.5$ (the center of expansion)
How large can the error be when $(n+1)$ terms are used to approximate $e^{2 x+1}$ with $x=1$?

Example 7 - Taylor Series

Obtain Taylor series expansion of $f(x)=e^{2 x+1}, a=0.5$

$$
\begin{array}{ll}
f(x)=e^{2 x+1} & f(0.5)=e^{2} \\
f^{\prime}(x)=2 e^{2 x+1} & f^{\prime}(0.5)=2 e^{2} \\
f^{(2)}(x)=4 e^{2 x+1} & f^{(2)}(0.5)=4 e^{2} \\
f^{(k)}(x)=2^{k} e^{2 x+1} & f^{(k)}(0.5)=2^{k} e^{2} \\
e^{2 x+1}=\sum_{k=0}^{\infty} \frac{f^{(k)}(0.5)}{k!}(x-0.5)^{k} \\
& =e^{2}+2 e^{2}(x-0.5)+4 e^{2} \frac{(x-0.5)^{2}}{2!}+\ldots+2^{k} e^{2} \frac{(x-0.5)^{k}}{k!}+\ldots
\end{array}
$$

Example 7 - Error Term

$$
\begin{aligned}
& f^{(k)}(x)=2^{k} e^{2 x+1} \\
& \text { Error }=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-0.5)^{n+1} \\
& \mid \text { Error }\left|=\left|2^{n+1} e^{2 \xi+1} \frac{(1-0.5)^{n+1}}{(n+1)!}\right|\right. \\
& \mid \text { Error } \left.\left|\leq 2^{n+1} \frac{(0.5)^{n+1}}{(n+1)!} \max _{\xi \in[0.5,1]}\right| e^{2 \xi+1} \right\rvert\, \\
& \mid \text { Error } \left\lvert\, \leq \frac{e^{3}}{(n+1)!}\right.
\end{aligned}
$$

