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0761214: Numerical Analysis
Topic 1:

Introduction to Numerical Methods and Taylor Series

Lectures 1-4:
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Lecture 1
Introduction to Numerical Methods

 What are NUMERICAL METHODS?

 Why do we need them?

 Topics covered in 0761214.

Reading Assignment: Pages 3-10 of textbook 
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Numerical Methods

Numerical Methods:

Algorithms that are used to obtain numerical 

solutions of a mathematical problem.

Why do we need them?

1. No analytical solution exists,

2. An analytical solution is difficult to obtain

or not practical.
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What do we need?

Basic Needs in the Numerical Methods:

 Practical:  

Can be computed in a reasonable amount of time.

 Accurate: 

 Good approximate to the true value,

 Information about the approximation error   
(Bounds, error order,… ).
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Outlines of the Course

 Taylor Theorem

 Number 
Representation

 Solution of nonlinear 
Equations

 Interpolation

 Numerical 
Differentiation

 Numerical Integration

 Solution of linear 
Equations

 Least Squares curve 
fitting

 Solution of ordinary 
differential equations

 Solution of Partial 
differential equations
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Solution of Nonlinear Equations

 Some simple equations can be solved analytically:

 Many other equations have no analytical solution:
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Methods for Solving Nonlinear Equations

o Bisection Method

o Newton-Raphson Method

o Secant Method
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Solution of Systems of Linear Equations
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Cramer’s Rule is Not Practical
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Methods for Solving Systems of Linear 

Equations

o Naive Gaussian Elimination

o Gaussian Elimination with Scaled 
Partial Pivoting

o Algorithm for Tri-diagonal 
Equations
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Curve Fitting

 Given a set of data:

 Select a curve that best fits the data. One 
choice is to find the curve so that the sum 
of the square of the error is minimized.

x 0 1 2 

y 0.5 10.3 21.3 
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Interpolation

 Given a set of data:

 Find a polynomial P(x) whose graph 
passes through all tabulated points.

xi 0 1 2 

yi 0.5 10.3 15.3 

 

 

  tablein  the is)( iii xifxPy 
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Methods for Curve Fitting  

o Least Squares

o Linear Regression

o Nonlinear Least Squares Problems

o Interpolation

o Newton Polynomial Interpolation

o Lagrange Interpolation
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Integration

 Some functions can be integrated 
analytically:
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Methods for Numerical Integration

o Upper and Lower Sums

o Trapezoid Method

o Romberg Method

o Gauss Quadrature
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Solution of Ordinary Differential Equations
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Solution of Partial Differential Equations

Partial Differential Equations are more 
difficult to solve than ordinary differential 
equations:
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Summary

 Numerical Methods:

Algorithms that are 
used to obtain 
numerical solution of a 
mathematical problem.

 We need them when

No analytical solution 
exists or it is difficult 
to obtain it.

 Solution of Nonlinear Equations

 Solution of Linear Equations

 Curve Fitting 

 Least Squares

 Interpolation

 Numerical Integration

 Numerical Differentiation 

 Solution of Ordinary Differential 
Equations

 Solution of Partial Differential 
Equations

Topics Covered in the Course
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 Number Representation
 Normalized Floating Point Representation
 Significant Digits
 Accuracy and Precision 
 Rounding and Chopping

Reading Assignment: Chapter 3

Lecture 2

Number Representation and Accuracy
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Representing Real Numbers

 You are familiar with the decimal system: 

 Decimal System:   Base = 10 , Digits (0,1,…,9)

 Standard Representations:

21012 10510410210110345.312  

part  part    

fraction       integralsign

54.213
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Normalized Floating Point Representation

 Normalized Floating Point Representation:

 Scientific Notation: Exactly one non-zero digit appears 
before decimal point.

 Advantage: Efficient in representing very small or very 

large numbers.

exponent signed:,0

exponent     mantissa  sign

104321.

nd

nffffd
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Binary System

 Binary System:     Base = 2, Digits {0,1}

exponent signed     mantissa  sign

2.1 4321
nffff 

10)625.1(10)3212201211(2)101.1( 
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Fact

 Numbers that have a finite expansion in one numbering 
system may have an infinite expansion in another 
numbering system:

 You can never represent 1.1 exactly in binary system.

210 ...)011000001100110.1()1.1( 



IEEE 754 Floating-Point Standard

 Single Precision (32-bit representation)

 1-bit Sign + 8-bit Exponent + 23-bit Fraction

 Double Precision (64-bit representation)

 1-bit Sign + 11-bit Exponent + 52-bit Fraction

0761214_Topic1 24

S Exponent8 Fraction23

S Exponent11 Fraction52

(continued)



0761214_Topic1 25

Significant Digits

 Significant digits are those digits that can be 

used with confidence.

 Single-Precision: 7 Significant Digits

1.175494… × 10-38 to 3.402823… × 1038

 Double-Precision: 15 Significant Digits

2.2250738… × 10-308 to 1.7976931… × 10308
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Remarks

 Numbers that can be exactly represented are called 
machine numbers.

 Difference between machine numbers is not uniform

 Sum of machine numbers is not necessarily a machine 
number   
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Calculator Example

 Suppose you want to compute: 

3.578 * 2.139

using a calculator with two-digit fractions

3.57 * 2.13 7.60=

7.653342True answer:
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48.9

Significant Digits - Example
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Accuracy and Precision

 Accuracy is related to the closeness to the true 
value.

 Precision is related to the closeness to other 
estimated values.
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Rounding and Chopping

 Rounding: Replace the number by the nearest   

machine number.

 Chopping: Throw all extra digits.



0761214_Topic1 32

Rounding and Chopping
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Can be computed if the true value is known:

100*
 valuetrue

ionapproximat  valuetrue

Error RelativePercent  Absolute

ionapproximat  valuetrue

Error True Absolute

t








tE

Error Definitions – True Error
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When the true value is not known:

100*
estimatecurrent 

estimate previous estimatecurrent 

Error  RelativePercent    Absolute  Estimated

estimate previous estimatecurrent 

Error  Absolute  Estimated
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Error Definitions – Estimated Error
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We say that the estimate is correct to n
decimal digits if:

We say that the estimate is correct to n
decimal digits rounded if:

n10Error 

n 10
2

1
Error 

Notation
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Summary

 Number Representation
Numbers that have a finite expansion in one numbering system 
may have an infinite expansion in another numbering system.

 Normalized Floating Point Representation
 Efficient in representing very small or very large numbers,

 Difference between machine numbers is not uniform,

 Representation error depends on the number of bits used in 
the mantissa. 
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Lectures 3-4

Taylor Theorem

 Motivation

 Taylor Theorem 

 Examples

Reading assignment: Chapter 4
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Motivation

 We can easily compute expressions like:

?)6.0sin(,4.1 computeyou  do HowBut,
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103 2





x

 way?practicala   thisIs

sin(0.6)? compute to

definition  theuse  weCan

0.6

a
b



0761214_Topic1 39

Remark

 In this course, all angles are assumed to 
be in radian unless you are told otherwise.  
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Taylor Series
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Maclaurin Series

 Maclaurin series is a special case of Taylor 
series with the center of expansion a = 0.
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Maclaurin Series – Example 1
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Taylor Series
Example 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0
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Maclaurin Series – Example 2
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Maclaurin Series – Example 3
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Maclaurin Series – Example 4
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Example 4 - Remarks

 Can we apply the series for x≥1??

 How many terms are needed to get a good 
approximation???

These questions will be answered using 
Taylor’s Theorem.
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Taylor Series – Example 5
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Taylor Series – Example 6
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Convergence of Taylor Series

 The Taylor series converges fast (few terms 
are needed) when x is near the point of 
expansion. If |x-a| is large then more terms 
are needed to get a good approximation.
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Taylor’s Theorem
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Taylor’s Theorem
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Error Term
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Error Term - Example
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Alternative form of Taylor’s Theorem
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Taylor’s  Theorem – Alternative forms
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Mean Value Theorem
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Alternating Series Theorem
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Alternating Series – Example
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Example 7
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Example 7 – Taylor Series
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Example 7 – Error Term
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