0761214: Numerical Analysis
Topic 1:

Introduction to Numerical Methods and Taylor Series

Lectures 1-4:
. @494 e
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Lecture 1

Introduction to Numerical Methods
S

0 What are NUMERICAL METHODS?
o Why do we need them?
O Topics covered in 0761214,

Reading Assignment: Pages 3-10 of textbook
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Numerical Methods

Numerical Methods:

Algorithms that are used to obtain numerical
solutions of a mathematical problem.

Why do we need them?
1. No analytical solution exists,

2. An analytical solution is difficult to obtain
or not practical.
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What do we need?

Basic Needs in the Numerical Methods:

= Practical:
Can be computed in a reasonable amount of time.

= Accurate:
Good approximate to the true value,

Information about the approximation error
(Bounds, error order,... ).
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o Taylor Theorem o Solution of linear

0 Number Equations
Representation O Least Squares curve
o Solution of nonlinear fitting
Equations o Solution of ordinary
o Interpolation differential equations
0o Numerical o Solution of Partial
Differentiation differential equations

o Numerical Integration
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Solution of Nonlinear Equations

0o Some simple equations can be solved analytically:

X% +4x+3=0

—4+./4% — 4(1)(3)

Analyticsolution roots =
2(1)

X=—1and X=-3

o Many other equations have no analytical solution:

x9—2x2—|—5=O\

y - N o analyticsolution

X=e
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Methods for Solving Nonlinear Equations

o Bisection Method
o Newton-Raphson Method

o Secant Method
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Solution of Systems of Linear Equations

X, +X,=3

X, +2X,=95

We can solveit as:

X, =3—X,, 3—X, +2X, =5

=X, =2, X, =3-2=1
What todo If we have
1000 equations in 1000 unknowns.
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Cramer’s Rule 1s Not Practical

Cramer's Rule can be used tosolve thesystem:

‘3 1‘ 1 3

5 2 1 5

SO T T T I
bl b

But Cramer's Rule is not practical for large problems.
Tosolve N equations with N unknowns, we need (N +1)(N —1)N!

multiplications.
Tosolvea 30 by 30 system,2.3x10°° multip lications are needed.
A super computer needs more than10*° yearstocomputethis.
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Methods for Solving Systems of Linear
Equations

o Naive Gaussian Elimination

o Gaussian Elimination with Scaled
Partial Pivoting

o Algorithm for Tri-diagonal
Equations
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Curve Fitting

0 Given a set of data:

X 0 1 2
y 05 103 213

o)

O Select a curve that best fits the data. One
choice is to find the curve so that the sum
of the square of the error is minimized.
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Interpolation

0 Given a set of data:

Xi 0 1 2
yi 05 103 153

o Find a polynomial P(x) whose graph
passes through all tabulated points.

yi =P(X;) If X;Is In the table
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Methods for Curve Fitting

o Least Squares
o Linear Regression
o Nonlinear Least Squares Problems

o Interpolation
o Newton Polynomial Interpolation
o Lagrange Interpolation
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Integration

0 Some functions can be integrated
analytically:

3 3

J'xdx:ix2 .1,

1 2 |, 2 2

But many functions have no analytical solutions:

A 2
je‘x dx =7
0
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Methods for Numerical Integration

o Upper and Lower Sums
o Trapezoid Method
o Romberg Method

o Gauss Quadrature
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Solution of Ordinary Differential Equations

A solution to the differential equation :

X" (t) +3x'(t) +3x(t) =0

X'(0)=1Lx(0)=0

IS a function x(t) that satisfies the equations.

* Analyticalsolutions are available for
special cases only.
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Solution of Partial Differential Equations

Partial Differential Equations are more
difficult to solve than ordinary differential
equations:

2 2
g lzj | g lzj F2=0

ox® ot

u(0,t) =u(l,t) =0, u(x,0) =sin(zx)
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o Numerical Methods:

Algorithms that are
used to obtain
numerical solution of a
mathematical problem.

o We need them when

No analytical solution
exists or it is difficult
to obtain it.

Topics Covered in the Course

O

Solution of Nonlinear Equations
Solution of Linear Equations
Curve Fitting

Least Squares
Interpolation

Numerical Integration
Numerical Differentiation

Solution of Ordinary Differential
Equations

Solution of Partial Differential
Equations
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Lecture 2

Number Representation and Accuracy
R E——

0 Number Representation

o Normalized Floating Point Representation
o Significant Digits

0 Accuracy and Precision

0 Rounding and Chopping

Reading Assignment: Chapter 3
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Representing Real Numbers

o You are familiar with the decimal system:

312.45=3x10% +1x10" +2x10° +4x10™* +5x10°°

o Decimal System: Base = 10, Digits (O,1,...,9)

o Standard Representations:

+ 312 . 45
sign integral fraction
part part
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Normalized Floating Point Representation

o Normalized Floating Point Representation:

+ d. f fp f3 g x 1oi”\
sign mantissa exponent

d=0, £n:signed exponent

o Scientific Notation: Exactly one non-zero digit appears
before decimal point.

o Advantage: Efficient in representing very small or very
large numbers.
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Binary System

o Binary System: Base = 2, Digits {0,1}

+ 1. f, f, f5 fy xzﬂ\‘

sign mantissa signed exponent

(L101)) = (L+1x2 2+ 0x272 +1x273)19 = (1.625)1

0761214_Topicl 22




Fact

o Numbers that have a finite expansion in one numbering
system may have an infinite expansion in another
numbering system:

(1.1);, = (1.000110011001100...),

O You can never represent 1.1 exactly in binary system.
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IEEE 754 Floating-Point Standard

0 Single Precision (32-bit representation)
= 1-bit Sign + 8-bit Exponent + 23-bit Fraction

S| Exponent? Fraction?3

0 Double Precision (64-bit representation)
= 1-bit Sign + 11-bit Exponent + 52-bit Fraction

S| Exponentl! Fraction>2

(continued)
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Significant Digits

o Significant digits are those digits that can be

used with confidence.
o Single-Precision: 7 Significant Digits
1.175494... x 1038 to 3.402823... x 1038
o Double-Precision: 15 Significant Digits

2.2250738... x 10308 to0 1.7976931... x 10308
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Remarks

o  Numbers that can be exactly represented are called
machine numbers.

O Difference between machine numbers is not uniform

o  Sum of machine numbers is not necessarily a machine
number
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Calculator Example

O Suppose you want to compute:
3.578 * 2.139
using a calculator with two-digit fractions

3.57 % [213]= 7.60
True answer: RSN

0761214_Topicl 27




Significant Digits - Example
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Accuracy and Precision

o Accuracy is related to the closeness to the true
value.

O Precision is related to the closeness to other
estimated values.
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Increasing precision

Increasing accuracy

(b)

(d)

Y
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Rounding and Chopping

0o Rounding: Replace the number by the nearest
machine number.

o Chopping: Throw all extra digits.
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Rounding and Chopping

Chopping Rounding

Underflow “hole”

at zero
0761214_Topicl
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Error Definitions — True Error

Can

e computed if the true value is known:

A

nsolute True Error

E, =| true value —approximation |

A

&

bsolute Percent Relative Error
true value — approximation

true value

=100
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Error Definitions — Estimated Error

When the true value is not known:

Estimated Absolute Error

E, =|current estimate — previous estimate

current estimate — previous estimate

&, =

current estimate

Estimated Absolute Percent Relative Error

~100
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Notation

We say that the estimate is correct to n
decimal digits if:

'Error | <107"

We say that the estimate is correct to n
decimal digits rounded if:
1

|Error [ < = x107"
2
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Summary

0o Number Representation

Numbers that have a finite expansion in one numbering system
may have an infinite expansion in another numbering system.

0 Normalized Floating Point Representation
= Efficient in representing very small or very large numbers,
= Difference between machine numbers is not uniform,

= Representation error depends on the number of bits used in
the mantissa.
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Lectures 3-4

Taylor Theorem

O Motivation
o Taylor Theorem
0 Examples

Reading assignment: Chapter 4

0761214_Topicl 37



Motivation

o We can easily compute expressions like:

3x10 °
2(x+4)

But, How do youcompute +/4.1, sin(0.6)?

Can we use the definition
to compute sin(0.6)?

0.6

Is this a practical way?
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Remark

o In this course, all angles are assumed to
be in radian unless you are told otherwise.
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Taylor Sertes

The Taylor series expansion of f(x) abouta:

(2) (3)
f(a)+ f'(a)(x—a)+ 22|(a)(x—a)2+ f ;(a)(x—a)3+...

or

Taylor Series= > 1 f k) (a) (x—a)X
o K!
If the series converge, we can write:

O

f0= 2o f9@ (x-a)*

k=0
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Maclaurin Series

0 Maclaurin series is a special case of Taylor
series with the center of expansion a = 0.

The Maclaurin series expansion of f(x):

£(0)+ f(0) X+ f<2)|(o) 21008,

2! 3
If the series converge, we can write:
fx)= 2 £09(0) xK

o K!
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Maclaurin Series — Example 1

Obtain Maclaurin series expansion of f(x)=¢”"
f(x)=e" f(0)=1
f'(x)=¢e" f'(0)=1
f(2)(x) =eX f(2)(0)=1

f ) (x) =eX f)0)=1 fork>1

0 2 3

oo K
e* = Zif(k)(O) K= XX —1exe 4 Xy
K K 2 3

The series converges for x| < .
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2.5

1.5

0.5

0

-1
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Maclaurin Series — Example 2

Obtain Maclaurin series expansion of f(x)=sin(x):
f (x) =sin(x) f(0)=0
f'(x) = cos(x) f'(0)=1
f (2)(x) = —sin(x) f20)=0
f ) (x) = —cos(x) f30)=-1
%f (k)(()) Xk = X— X3 + X5 —X7 +....
o K 3 5 7

The series converges for x| < oo,

sin(x) =
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Maclaurin Series — Example 3

Obtain Maclaurin series expansion of : f (x) = cos(x)
f (X) =cos(x) f(0)=1
f'(x)=-sIn(x) f'(0)=0
f@(x)=-cos(x) f@0)=-1
f ®)(x) =sin(x) f0)=0
o ¢ (k) 2 4 6

Cos(X) = Zf ©) (X)kzl—x Ay

o K 2! 41 6!
The series converges for |x| < .
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Maclaurin Series — Example 4

Obtain Maclaurin series expansion of f(x)=1i
— X

f(x) = 1_% £(0)=1
F(x) = (1_1X)2 £1(0) =1
£ (x) = (1_2X)3 £(2(0)=2
£3)(x) =(1_fo 0y =6

: : : 1
Maclaurin Series Expansion of : 1—:1+x+ X%+ x3
—X

Series converges for | x| <1
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Example 4 - Remarks

o Can we apply the series for x=17?7

0 How many terms are needed to get a good
approximation???

These questions will be answered using
Taylor’s Theorem.
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Taylor Series — Example 5

Obtain Taylor series expansion of f(x)=£ata=1

X
f(x)=% £(1) =1
f'(x)z;—z1 £1(1) = -1
f(2>(x)=% f()(1)=2

f ) (x) = ;—f f 1) =-6

Taylor Series Expansion (a=1): 1—(x—1)+(x-1)% = (x—1)° +...
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Taylor Series — Example 6

Obtain Taylor series expansion of f(x)=In(x)at(a=1)

f(x)=In(x), f'(x):%, f(z)(x):__g, f(3)(x):£

X X3
f(1) =0, f')=1 fP0=-1 O@Q)=2

Taylor Series Expansion: (x—l)—%(x—l)2 +%(x—1)3—...
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Convergence of Taylor Series

o The Taylor series converges fast (few terms
are needed) when x is near the point of
expansion. If |x=a| is large then more terms
are needed to get a good approximation.
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Taylot’s Theorem

If a function f (x) possesses derivatives of orders 1, 2,...,(n+1)
on an interval containing a and x then the value of f (x) is given by :

(n+1) terms Truncated
Taylor Series

Remainder

ARSI

"= e (x—a)" and & is between a and x.
+1)!
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Taylot’s Theorem

We can apply Taylor's theoremfor :

f(x):llX with the point of expansion a=0 If |x|<1.

If x =1, then the function and its
derivatives are not defined.
— Taylor Theorem is not applicable.
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Error Term

To get an idea about the approximation error,
we can derive an upper bound on:

(n+1)
Rn _ f (5) (X_a)n+l
(n+1)!
for all values of & between a and x.
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Error Term - Example

How large is the error if we replaced f (x) =e* by
the first 4 terms (n = 3) of its Taylor series expansion
ata=0 when x=0.27

f (M (x) = ¢ f(ME) < %2 forn>1
f (n+1)
R, = (n+1()‘f) (x—a)"t
e0.2

R, [< (0.2)™" = |R4|< 8.14268E — 05

(n+1)!
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Alternative form of Taylor’s Theorem

Let f (x) havederivatives of orders 1, 2,...,(n+1)
on an interval containing x and x + h then :

0 (k) (x .
f(x+h):kz_;3 k!()hk+Rn (h =step size)

f (T GINE

N where &£ Is between x and x+h
(n+D
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TZLYIOI’ ’S Theorem — Alternative forms

(k) f (n+1)
f(X) Zf .(a)(X a) -|— (n 1()?)( . )n+1

where .§ IS between a and x.

a—> X, X—=>X+h

() (n+1)
f(x+h)= Zf (X)h f(n+1()9:)h“+1

where £ IS between X and x+h.
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Mean Value Theorem

If f(X) Isacontinuous function ona closed interval [a, b]
and Its derivative Is defined on the open interval (a,b)
then there exists & € (a, b)
£(8) = f(b)— f(a)

b—a
Proof : Use Taylor's Theoremfor n=0,x=a, x+h=>Db

f(b)=f(a)+ 1°(c) (b—a)
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Alternating Sertes Theorem

Consider the alternating series:

S=a,—-a,+a,—a, +A

a, >a,>a,>a, >A
If < and
lim a, =0
_ N—>o
S

n

a_ ... Firstomitted term

n+1 -
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‘Theseries converges
and

n+1

S-S,|<a

.

. Partial sum (sum of thefirst n terms)
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Alternating Series — Example

sin(1) can be computedusing: sin(l) = 1—1 11

3 5 7
This Is a convergent alternating series since :

a=>a,>a,>2a,>A and lim a, =0

Then:

sin(l) — (1— %) =

sin(1) — (1—% éj

1

1

7!
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Example 7

Obtain the Taylor series expansion

of f(x)= e?**l gt a= 0.5(the center of expansion)
How large can the error be when (n +1) terms are used

to approximate e2*™ with x =17
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Example 7 — Taylor Series

Obtain Taylor series expansion of f(x) =e?*™ 3=05

f(x)=e**" f (0.5) = e?

f'(x) =282t f'(0.5) = 2¢°

f (2)(x) = 42" f (2)(0.5) = 4¢2

f () (x) =2k g2** f (K)(0.5) = 2¥e?

2%+ _ Oif(k) (0.5) (x—0.5)¢
k! |

€
k=0

_AE\2 Ak
=e” 4+ 2e%(x—0.5) + 4e? (X ;'5) ...+ 252 (X 3'5) +
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Example 7 — Error Term

f () (X) — 2k e2x+1

f (n+1) (&) (X — 0.5)n+1

Error =
(n+1)!
|Error|: N+l a 28+l (1—0_5)”+1
(n+1)!
n+1
|Error|32n+1 (0.5) - ‘62§+1

(N+1)! sef051]
3

(n+1)!

[Error|<
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